
25

s the popularity of the World
Wide Web grows, so does the demand for faster and more
efficient access to the Internet. Several techniques have been
developed to meet this demand, including caching, prefetch-
ing, and pushing. Each of them has its own strengths and
weaknesses, and all three approaches are being incorporated
in the Internet. In this article, we investigate real time online
prefetching. Specifically, while the user is browsing the
WWW, pages that will very likely be accessed in the near
future are downloaded according to certain criteria. Upon
receiving a request from the user, the browser displays the
prefetched version of the file whenever it is available and is
up-to-date. As the user continues to issue new requests, new
candidate pages for prefetching appear and more files may be
prefetched as a result.

The idea of prefetching stems from the fact that, after
retrieving a page from the remote server, a user usually
spends some time viewing the page, and during this period the
local machine, as well as the network link, is generally idle. If
we can take advantage of this phenomenon by fetching some
files that will likely be accessed soon using the otherwise idle
system (in other words, prefetching them to the local disk),
there will be no transmission delay when the user actually
requests these files. In addition, prefetched files can be imme-
diately processed if decryption or decompression is required,
or if any Java applets need to be handled, which allows fur-
ther reduction in the delay of loading a page. These are some
of the benefits we can get from prefetching. The difficulty of
realizing efficient prefetching lies in the fact that it is impossi-
ble to predict exactly what a user is going to need. So some of
the prefetched files are never used, which means prefetching
increases the system load. At some point, this increase in load
may increase the delay of normal (nonprefetching) requests
significantly and may eventually cause the overall system per-
formance to degrade. Therefore, the key challenge in prefetch-
ing is to determine “what to prefetch” so that improvement in
performance will be enhanced.

The prefetching problem may be solved in two steps.
First, we need to find out the likelihood with which each file
will be accessed. In this article, we estimate this likelihood
with the access probability, which is defined as the condition-
al probability of a file being requested by the user in the
near future, given the page currently being viewed. Once the
access probability of a file is obtained, the next step is to
determine whether it is more cost effective to prefetch this
file. It turns out that, for the server on which the file is
located, we can compute a prefetch threshold such that the
average delay is guaranteed to be reduced by prefetching
this file as long as its access probability is greater than its
server’s prefetch threshold. As mentioned before, the
prefetch threshold is a function of current system conditions
and certain cost parameters.

In a mobile environment a user moves around and con-
nects to the backbone network through different types of
links, or even becomes completely disconnected. Mobility
brings new challenges to the prefetch problem, because
each type of network link has its own characteristics in
terms of capacity and bandwidth cost, which will certainly
require that different numbers of files be prefetched for dif-
ferent links to achieve the largest performance improve-
ment. In our prefetch scheme, since the prefetch thresholds
are computed based on parameters including network
capacity and network cost, the amount of data prefetched
adapts naturally to the mobile environment. Furthermore,
the prediction algorithm may be extended to download files
in a group so that a user may access these files while discon-
nected from the network.

The Basic Prefetch Scheme
In [1], we proposed an adaptive network prefetch scheme
comprising a prediction module and a threshold module. The
two modules compute the access probabilities and the
prefetch thresholds, respectively. The prefetch scheme works
in the following way, as illustrated in Fig. 1. Basically, when-
ever a new page is displayed, the prediction module updates
the local access history, if needed, and computes the access
probability of each link on that page. At the same time, for
each server which has at least one link on this page, the
threshold module computes its prefetch threshold based on

IEEE Personal Communications • October 1998 1070-9916/98/$10.00 © 1998 IEEE

A

Web Prefetching in a Mobile Environment
Zhimei Jiang and Leonard Kleinrock

University of California at Los Angeles

Abstract
Prefetching is one of the most popular techniques for dealing with the slow access speed of the World Wide Web. To provide a mobile user with

effective real time online prefetching requires that the prefetch decision is able to adapt to different network systems. This article describes an
adaptive network prefetch scheme which accomplishes this task. The basic scheme is comprised of a prediction module and a threshold module,

which computes the access probabilities and prefetch thresholds respectively. The access probabilities indicate how likely files will be requested by
the user, and the prefetch thresholds determine whether the performance may be improved by prefetching certain files. As a user changes net-

work in a mobile environment, it is the prefetch threshold, which is computed based on system conditions as well as costs of bandwidth and time,
that adjusts the number of prefetched files accordingly. In addition, by extending the method of computing the access probabilities, we are able to

prefetch a group of files together for a user who is about to be disconnected from the network.

This work was supported by the Advanced Research Projects Agency,
ARPA/CSTO, under Contract DABT-63-94-C-0080, “Transparent Virtual
Mobile Environment.”

IEEE Personal Communications • October 199826

network and server conditions as well as the costs
of time and bandwidth to the user. Finally, all the
files with access probability greater than its server’s
prefetch threshold are prefetched. The prediction
algorithm may also be run at the server, in which
case access probabilities will be sent to the user
along with the requested page. Details about these
two modules will be discussed in the following sec-
tions. Our prefetch scheme is a general one that
may be applied to almost any network application
to decide what information to prefetch [1]. In this
article we focus on its application to Web brows-
ing.

The rest of this article is organized as follows. In
the next two sections, we study the prediction algo-
rithm and the threshold algorithm, respectively. We
first summarize results from [1] and then discuss
the implication of these results for implementing
prefetching on the Internet. We then show how the
basic prefetch scheme may be applied to mobile
environments. The article goes on to discuss a
prefetch program we have developed. In the last
section, we compare prefetching with two other
popular Internet technologies: caching and pushing.

Prediction Module
Prediction algorithms have been studied intensively
in areas such as operating systems. Typically, they
keep track of the sequence of actions taken by a
user or a program to determine the pattern in
which these actions take place. And most of them
consider actions that are close to each other (or, in
other words, fall in the same window) to be depen-
dent, where the definition of window is determined
by the specific algorithm. Based on this informa-
tion, a dependency graph is created, in which nodes
represent actions, and the weight of the directed edge from
node i to j indicates how likely action i is followed by action j
closely.

The approach described above is also employed in several
prediction algorithms for Web browsing [2, 3]. The window
sizes in these algorithms are chosen in terms of either the
number of page requests or the time between two requests.
However, this kind of algorithm is generally not sufficient
for Web browsing. As an example, let’s consider the pages
shown in Fig. 2. Assume the top-level news summary page
has two links, one to the business news page and another to
the sports news page. In addition, on the two second-level
pages, there are many links to the latest news in the corre-
sponding category. A user checks both pages at level two
every day through the links on the summary page. If he/she
always reads the business news page and the pages under it

first, then in the request sequence the requests for the sports
page are usually far away from those for the business and
news summary pages. Hence, the dependency between them
cannot be captured unless the window size is set very large,
which is undesirable in many situations. If the user randomly
picks one of the two second-level pages to visit first, the
dependencies between them and the summary page will still
be weakened. This situation occurs more often than one
might think given that most of the time a page request is fol-
lowed by several requests for images on that page, which
may increase the distance between two page requests sub-
stantially.

Seeking a more effective prediction algorithm, we notice
that Web pages are usually structured to link related pages
together, and it is more likely that a user would click links on
the pages or buttons on the browser, rather than type in a

URL, to go to the page in which he/she is interested.
Occasionally, bookmarks are used to switch to a differ-
ent site with a related topic. Based on this observation,
in [1] we proposed a prediction algorithm in which we
assumed that at any time only pages linked directly to
the currently viewed page may have nonzero access
probabilities.

A Prediction Algorithm
In our prediction algorithm, in order to compute the
access probabilities we keep track of which pages are
accessed and how they are accessed. Specifically, for a
page, say page A, and a link Bi on A, we use a counter
CA to track the number of times page A has been down-

■ Figure 1. Adaptive prefetch scheme flowchart.

Prediction module

Compute the access probability
of the link

Threshold module

Compute the
prefetch threshold
of the link’s server

Does the link’s
access probability

≥
its server’s

prefetch threshold
?

User switches
to a new page

End

Yes

No

For each distinct
link on the page

Prefetch the page

■ Figure 2. An example of structured links in the WWW.

News 1 News 2 News kNews 1 News 2 News n

Sports news Business news

Business news

IEEE Personal Communications • October 1998 27

loaded, and use a counter CA,Bi to track the number of times
page Bi is accessed by clicking on its link on page A. There is
exactly one counter for each page and one for each distinct
link on a page. The related counters are updated each time
the user issues a new request. The access probability P{Bi|A},
which is the conditional probability that link Bi will be
accessed given that A is being viewed, is computed as follows:

(1)

We arbitrarily require CA to be at least 5 in Eq. 1 because
if the user has not been to a page enough times, the access
history may not represent his/her real interest. This algorithm
is illustrated in Fig. 3. If a page, D, does not have a link on A,
then P{D|A} is simply zero according to our assumption. For
the example above, as long as the news summary page is not
updated with very high frequency, our prediction algorithm
will generate access probabilities close to one for both the
business and sports news pages, since both are accessed each
time the user reads news.

Our prediction algorithm may be run at either the client
or server site. In the latter case, the server aggregates the
access patterns of recent visitors to compute the access prob-
abilities for future users, and access probabilities of the links
on a page are sent to the user together with the page to mini-
mize delay and processing cost. Currently, most Internet Web
servers save access requests from users in their log files,
which can easily be used by our prediction algorithm. More
details about the algorithm and its implementation may be
found in [1].

Clearly, access probabilities generated at a client site indi-

cate the user’s personal interests, while those from a server
show the popularity of the files among many users who have
accessed this server. If a user has not visited a page often
enough to obtain reliable access probabilities based on
his/her own access history, the server’s access probabilities
are likely to be more accurate. Access probabilities from
server and client may be merged in the following way at the
client site. If a page has been visited fewer than five times by
the user, and the access probabilities of its links are available
at the server, the probabilities from the server are used; oth-
erwise, access probabilities from the client are used. We
compared the performance of access probabilities from dif-
ferent sources through simulation. The results are summa-
rized below.

Simulation Results
To further study our prediction algorithm, we compared the
performance of prediction using access probabilities from
either the client, the server, or a combination of them as
described above through trace-driven simulations, where the
trace was taken from the log file of the UCLA Computer
Science Department Web server. In the simulation, we mea-
sured two important parameters: the hit rate and the suc-
cessful prediction rate. The hit rate refers to the percentage
of user requests satisfied by the prefetched files. Generally,
the higher the hit rate, the more time saved by prefetching.
The successful prediction rate is the probability of a
prefetched file being used eventually. A high successful pre-
diction rate indicates that less bandwidth is wasted due to
prefetching unused files. A fixed prefetch threshold was used
in each simulation run, and all the files with access probabil-
ity greater than or equal to the prefetch threshold were
prefetched.

One of the Web pages we examined is the homepage for
TAs (teaching assistants), which contains links to all the class
homepages. These class homepages are updated frequently to
include new assignments, handouts, and so on. Figures 4 and
5 show the successful prediction rate and hit rate obtained for
this TA home page, with prefetch thresholds ranging from
0.01 to 0.9 using the three different sources of access proba-
bilities described above.

As expected, when using only access probabilities from the
client site, the successful prediction rate is generally high. Fig-
ure 4 shows that its value is around 70 percent even when the
threshold is just slightly higher than zero. The successful pre-
diction rate is lower when access probabilities from the server

P B A

C

C
for C

for C

i

A B

A
A

A

i

{ | }
min ,

,

=

≥

<

1 5

0 5

■ Figure 3. A prediction algorithm for Web browsing.

Page A (CA)

P(Bi|A)=
C(A,Bi)

CA

Link Bi
C(A, Bi)

Page Bi (CBi)

■ Figure 4. Successful prediction rate vs. prefetch threshold for a
TA homepage.

Prefetch threshold

TA home page

Using client access probabilities
Using server access probabilities

Using client and server access probabilities

0.2
0

0.2Su
cc

es
sf

ul
 p

re
di

ct
io

n
ra

te

0.4

0.2

0.8

1

0.4 0.6 0.8 10

❁

■ Figure 5. Hit rate vs. prefetch threshold for a TA homepage.

Prefetch threshold

TA home page

Using client access probabilities
Using server access probabilities

Using client and server access probabilities

0.2
0

0.2

H
it

 r
at

e

0.4

0.2

0.8

1

0.4 0.6 0.8 10

IEEE Personal Communications • October 199828

or the combination of client and server
access probabilities are used. However,
the result is good considering that the
server access probabilities are comput-
ed from the access history of hundreds
of other clients who are totally unre-
lated to the user. While client access
probabilities yield a high successful
prediction rate, they are available only
for a limited number of pages that are
visited frequently by the user. Thus,
the hit rate in this case is lower than
that using server access probabilities, as shown in Fig. 5. More
simulation results can be found in [1]. In the rest of this sec-
tion, we briefly discuss several possible extensions to the basic
prediction algorithm.

Extensions to the Prediction Algorithm
Figure 4 shows that when using access probabilities from
the server, the successful prediction rate is generally lower.
To achieve a better prediction result, we may divide users
into different categories according to their interests. For
example, one category may be created for users who are
interested in pages related to database research. Each cate-
gory has its own set of access probabilities, which are com-
puted from the access history of users within the same
category. Initially, a new user is provided the access proba-
bilities of the general category. Once a specific category in
which the user belongs is determined based on his/her
access pattern, access probabilities for this category will be
sent instead. This categorization of users according to their
interests may be realized using cluster algorithms such as
the one proposed in [4].

Another possible extension is to predict deeper than one
layer of links. More specifically, assuming there is no direct
link for C on page A, if link B on page A has access probabili-
ty P{B|A} and link C on B has access probability P{C|B},
then we may let access probability P{C|A} be P{B|A}
P{C|B}, instead of zero as in the original algorithm. By
extending the method of computing access probabilities in this
way, pages that are not linked directly to the current page
may also be prefetched. This extension becomes necessary in
cases where a user would like to download a relatively large
group of pages related to a certain topic for future reference
without going through every intermediate page. We will con-

tinue to discuss this issue later as one
of the strategies for dealing with
mobility.

In addition to the linking relations
among pages, there are other things
we may take advantage of to improve
the prediction results. One possibility
is to use bookmarks. For example,
when a user logs on to the Internet for
the first time in a day, he usually goes
through the same routine: checks stock
prices, news, daily comics, and so on.

If these pages are bookmarked, a prediction algorithm can
then observe which sequence of bookmarks are likely to be
used close to each other in a session, regardless of the number
of page requests between them. When one bookmarked page
is requested, others that might follow it may then be
prefetched.

Other algorithms turn to the users for better prediction by
asking them either to indicate what they are interested in or
to rate the prediction results as feedback to the program [5,
6]. In general, the more user involvement required, the more
inconvenience might be experienced. We believe that the way
in which pages are linked together is one of the most impor-
tant items of information we need to take advantage of for
efficient Web browsing prediction.

Threshold Module
Once the access probability of a link is obtained, the next step
is to find out whether it is worthwhile to prefetch the corre-
sponding file. There are three factors we must consider when
selecting files to prefetch: the amount of time that might be
saved by prefetching the file for the user who may need it; the
amount of bandwidth that will be wasted if the file is not
used; and, more important, the impact of the prefetch request
on other users whose normal requests may be delayed by the
prefetch request. The latter is a necessary consideration in
order to ensure that the overall system performance can be
improved by prefetching the file.

In [1], we studied this problem using the multi-user system
model shown in Fig. 6, where users share the same server as
well as the network link; we assumed a round-robin processor
sharing system [7]. System performance is measured in terms
of cost, which is the sum of the response time cost (αT$/s) and
bandwidth cost (αB$/kb). By determining which files should be
prefetched such that the total cost in the system may be safely
reduced, we are able to prove that for an arbitrary distribution
of access probabilities, an upper bound on the optimum
prefetch threshold is given by

(2)

where b is the system capacity in kilobits per second and r is
the average system utilization.

What this result indicates is that, for the system shown in
Fig. 6, regardless of the access probability distribution, as long
as each user only prefetches files with access probability
greater than the prefetch threshold computed by Eq. 2, we are
guaranteed to achieve a lower average cost per user request
than without prefetching. Moreover, the more such files are
prefetched, the lower the average cost. The fact that H is an
upper bound on the optimum prefetch threshold determined
by the actual distribution of access probabilities is particularly
important, since it is almost impossible to find this distribu-

H
b

T

B

T

B

=
−

− +
1

1

1 2
–

()

()

ρ α
α

ρ α
α

■ Figure 6. The system model used for
studying the prefetch threshold.

Network
link

Server

User 1

User 2

•
•
•

User n

■ Figure 7. Prefetch threshold H as a function of utilization ρ for
different values of r (r = αT/αB, b = 100).

Utilization

s = 1 b = 100

r = 5
r = 10
r = 20
r = 50

r = 100
r = 200
r = 500

H = ρ

0.1
0

0.1

Pr
ef

et
ch

 t
hr

es
ho

ld
 H

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

IEEE Personal Communications • October 1998 29

tion in a real system. From now on, we use this upper bound
H as the prefetch threshold of the server.

According to Eq. 2, for a given system (i.e., for fixed b),
the prefetch threshold is affected by only two parameters: ρ
and αT/αB. Figure 7 shows how the threshold changes with
the system load ρ for different values of αT/αB. As expected,
the higher the ratio αT/αB (in other words, the more expen-
sive the time compared to the bandwidth), the lower the
threshold. Thus, more files are prefetched to save time. The
relation between the threshold and system load is more
complicated. In general, for b ≤ α T/α B, the threshold
increases monotonically with system load; while for b >
α T/α B, it first decreases slightly and then increases with
increasing load [1].

Let us now consider two systems with the same αT/αB but
different capacity b. If they also have the same load ρ, Eq. 2
indicates that the threshold is higher in the faster system (i.e.,
when b is larger). By multiplying both the denominator and
the numerator of Eq. 2 by b, we obtain

Since the average delay of transmitting a file of size s is

it follows that for these two systems, which have the same
αT/αB but different capacity b, when the average delay and
average file size are also the same, the threshold is again high-
er in the faster system.

Another interesting point is that the threshold is indepen-
dent of individual file size. (Of course, it does depend on the
average file size which affects the system load ρ.) This implies
that for two files with the same access probability but differ-
ent file sizes, we do not prefer to prefetch the smaller file
over the larger one or vice versa. This is because, although
prefetching the larger file consumes more bandwidth, it also
saves more time if the user does request it later. Here, we
assume that a file cannot be used unless the entire file has
been downloaded. In Web browsing, a user may start viewing
the top part of a page while the rest is still being downloaded,
which gives preference to prefetching smaller files. However,
if we change our strategy accordingly to prefetch just the top
portion of big files, the individual file size would again make
no difference to the prefetch decision.

Equation 2 is derived for a system in which all users have
the same αT. In reality, people value their time differently,
which means αT varies. Assume there are n different types of
users in the system, and the time of type k users is worth
αTk($/s). We can prove that the prefetch threshold for type k
users is

(3)

where λ i1 is the arrival rate of normal (nonprefetching)
requests from type i users and s is the average file size [1].
Similar to the previous system, by letting type k users only
prefetch files with access probability greater than Hk, a lower
average cost can always be achieved. And the more files are
prefetched in this way, the lower the cost. Furthermore, the
results we discussed in the last few paragraphs also hold for
this more complex system. The main difference is that Hk also
depends on the distribution of the requests from different
types of users. The conservative way to estimate Hk is to
assume that all other requests are from users with the highest
αT. A better estimation may be obtained if the system can
provide such information.

Our threshold algorithm computes the prefetch threshold
based on system conditions and costs to guarantee that
prefetching improves system performance. This is certainly
more efficient than fixing either the number of files
prefetched on a page or the value of the prefetch threshold.
In addition, it allows the prefetch threshold to adapt natural-
ly to different systems in a mobile environment. In the next
section, we investigate how mobility is supported by our
prefetch scheme.

Prefetching in a Mobile Environment

So far, we have discussed the prediction and threshold algo-
rithms, which compute the access probabilities and prefetch
thresholds, respectively. In particular, we showed that by
prefetching only those files with an access probability greater
than its server’s prefetch threshold, a lower average cost can
always be achieved. And the more such files are prefetched,
the greater the improvement. Our study of the prefetch
threshold is based on the multi-user system shown in Fig. 6.
For the real Internet, if we divide the entire path from a

client to a server into three components, namely
the user’s intranet, the link between the intranet
and the Internet, and the rest of the Internet1 as
illustrated in Fig. 8, each component may be
modeled as a multi-user system in Fig. 6. Note
that a user shares the system resources with dif-
ferent users in different components. Depending
on the location of the user and the server, the
Internet may look different in terms of delay,
capacity, and load [8]. In general, it is relatively
easy to obtain these network characteristics for
the Intranet and the connection between the
Intranet and the Internet backbone. Systems like
the one proposed in [9] may help us getting infor-
mation about backbone network and Web servers

H

b
s

b

k

T

B

T

B B
i Ti

n

k

k

i

= −
−

− + − + =∑
1

1

1 12
11

()

() ()

ρ
α
α

ρ
α
α

ρ
α

λ α

s

b()
,

1− ρ

H

b

b b

T

B

T

B

=
−

− +
1

1

1 2 2
–

()

()
.

ρ α
α

ρ α
α

■ Figure 8. Mapping between the multi-user system model and the Internet.

Intranet

Intranet

Intranet

Intranet

•
•
•

•
•
•

User 1

User 2

•
•
•

User n

Internet
backbone

Intranet

Connection
to backbone

Intranet

1 We may further divide the rest of the Internet into the
backbone network and the network which contains the Web
server.

IEEE Personal Communications • October 199830

efficiently. To estimate the prefetch threshold
of the server for the user, Eqs. 2 or 3 may be
used to compute the prefetch threshold for
each part; then the maximum of the three is
taken as the prefetch threshold for this server.
As a user moves around in a mobile environ-
ment, all three components of the path may
change, which will subsequently affect the
prefetch threshold and hence the number of
files prefetched.

In this section we investigate how to handle
prefetching in two different situations involving
mobility. In the first case, a user moves around
carrying his laptop while being connected to
different types of network links, such as a high-
speed Ethernet, a phone line, a wireless net-
work, and so forth. Since each type of link has
its own characteristics in terms of cost and
capacity, we need to find out how they affect
the value of the prefetch threshold. In the sec-
ond case, the user anticipates that he will be
disconnected from the network for a long peri-
od of time. In order to be able to access net-
work files during that period, the user may indicate what
information will be needed and prefetch some of it when con-
nection is available. This is different from the real-time
prefetching model we have been discussing so far in this arti-
cle. However, it turns out that our prediction algorithm may
be extended to determine which files to prefetch in this situa-
tion as well. The mobile environment in the real world is
more like a mixture of the above two cases. Namely, the user
connects to the network via different links at different loca-
tions, while in between he is disconnected from the network
for a certain period of time. In the following, we discuss them
separately in detail.

Prefetching for a Mobile User
Using our adaptive prefetch scheme, it is straightforward to
support prefetching for a user who is moving among networks.
Basically, the prediction algorithm remains the same for dif-
ferent networks. To compute the prefetch threshold of a serv-
er for an Internet user, as mentioned before, we divide the
entire path between them into three parts and calculate the
prefetch threshold for each part separately. Then the maxi-
mum of the three thresholds is used as the prefetch threshold
for the server. As the user moves around and is connected to
different subnets, the αB, b, and ρ in each of the three compo-
nents may change. Therefore, the prefetch threshold for the
server changes with the environment according to the formula
presented in the last section. In this way, mobility is supported
nicely with our prefetch scheme.

We now show how the prefetch threshold may differ in
various networks. There are many options available to con-
nect users within a subnet or to the backbone network, and
the cost and capacity of these links vary over a large range. At
one end are high-speed optical links, fast and relatively cheap;
at the other end are wireless networks, slow and expensive;
between are links with a fair amount of capacity and moder-
ate cost. Table 1 lists the cost and capacity (b) of some popu-
lar network connections available on the market. In order to
apply our prefetch threshold formula to a particular network,
we need the value of its αB, which indicates the cost of trans-
mitting 1 kb of data. However, in Table 1 only the αBs for
CDPD and DirectPC are given directly. Most providers
charge for network usage according to time. In other words, a
user pays to use network links for a certain period of time,
regardless of the amount of data actually transmitted. There-

fore, αB is simply zero in this case. Note that the αB in some
networks (e.g., the LAN within a company) is inherently zero
because people are not charged for using the network. When
αB = 0, the prefetch threshold is given by

(4)

based on the proof in [1], where s, b, λ i1, and αTi are defined
in the same way as in Eq. 3. In particular, if αT is the same for
all users sharing the system, the prefetch threshold is simply H
= ρ.

To further compare the prefetch threshold in different
environments, for those networks that are charged by time we
wish to find out how a user may be charged according to the
actual bandwidth usage, and still end up paying the same cost
on average for the same period. In particular, we estimate the
actual bandwidth usage by assuming that half of the network
capacity is wasted if charged by the hour and three quarters is
wasted if charged by the month, since in the latter case the
network is mostly idle at night. Then the cost per kilobit, αB,
may be obtained by dividing the cost per hour or month with
the actual amount of data transmitted during that period. In
Table 1, the αBs for links other than CDPD and DirectPC are
computed in this way.

The following observation is quite interesting. From Eq. 2
for the prefetch threshold, if we multiply both denominator
and numerator by αB, we have

(5)

Equation 5 shows that for two systems with the same r, if
the user also sets his αT the same for both links, the threshold
only depends on the product of αB and b; and the lower αBb,
the lower the prefetch threshold. This implies that the prefetch
threshold of a link which is expensive (high αB) and slow (low
b) may be the same or even lower than that of a faster link
with low αB. This seems to be somewhat contrary to our intu-
ition that when bandwidth is scarce and expensive, fewer files
should be prefetched. However, what this result really indi-
cates is that if a user “has to” get the files regardless of the
network link being used, the prefetch decision depends on
αBb and we might need to prefetch more files in a more costly
and slower network. If we don’t do so, the time cost to the

H
b
T

B T

= − −
− ⋅ +

1
1

1 2
()

()
.

ρ α
ρ α α

H
s

b

k
T

T i Ti
n
k

k i

= −
−

− + =∑
1

1

1 11

()

()

ρ α

ρ α λ α

■ Table 1. Capacity and cost of some popular network connections.

Dial-up 28–56 kb/s $2/hr. %6.9 x 10–6 2.8 x 10–4

CDPD 10.2 kb/2 $.14/kbyte3 $1.8 x 10–2 3.4 x 10–1

Cable modem 500 kb/s $50/month $1.5 x 10–7 7.7 x 10–5

Satellite (DirectPC) 400 kb/s $.60/Mbyte3 $7.5 x 10–5 3.0 x 10–2

ISDN 64 kb/s $200/month $4.8 x 10–6 3.1 x 10–4

Frame relay 128 kb/s $500/month $6.0 x 10–6 7.7 x 10–4

T1 1.544 Mb/s $1200/month $1.2 x 10–6 1.9 x 10–3

T3 44.736 Mb/s $25000;/month $8.6 x 10–7 3.8 x 10–2

1 All costs are averaged over several providers.
2 Refer to “Prefetching for a Mobile User” for how the αBs are computed.
3 Price varies with minimum monthly payment and time of day.

Network Capacity (B) Cost1 Cost/kb (αB)2 αB · b

IEEE Personal Communications • October 1998 31

user will surpass the bandwidth cost and result in an even
higher total cost. From another point of view, αBb is actually
the link cost per unit time, assuming that data is transmitted
at the full speed given by b. In Table 1, the per-kilobit cost αB
of a dial-up network is higher than that of a T1 link; however,
more files are prefetched in the former system which has
lower αBb.

For given αT and ρ, the prefetch threshold for wireless net-
works (e.g., CDPD) is highest, since its transmission cost is
much higher than the others. When bandwidth is expensive,
users are often willing to delay requests or sacrifice the quality
of the page by requesting less information. For instance,
instead of sending a full page with large high-resolution
images, the page may be re-authored to reduce its size, and
distilled images which are much smaller may be sent [10, 11].
Or, in a case in which a file is only updated slightly, rather
than sending the whole file, the difference between the two
versions may be delivered [12]. Most of these methods require
extra processing at a proxy server which is connected to the
backbone network through a faster and less expensive link. By
combining them with prefetching, even better performance
can be achieved. For example, upon receiving a prefetch
request from a user, the proxy server fetches the file from the
server and starts processing it. Then the simplified version is
forwarded to the client over the slow link. Even if the user
decides not to prefetch any files through the slow link, a sig-
nificant amount of processing time may still be saved by
prefetching the files to the proxy server and having them pro-
cessed in advance.

Off-Line Prefetching
Let us now consider another scenario in which files are
prefetched to deal with disconnectivity. Suppose a busi-
nessman is going to fly to another city for a meeting.
During the trip, he would like to do some research on a
product that is available from several companies through
their Web pages. However, it is very expensive to access
the Internet during the trip. To avoid paying the high
price, he might choose to download the information
beforehand. One way of doing this is to go to each page
that seems to be interesting and download it without
reading the details. The more efficient way is to have it
done automatically by the prefetch program, which we
give the name of “off-line prefetching,” as opposed to
the real-time online prefetching we have been studying
so far in this article.

For off-line prefetching, the threshold algorithm dis-
cussed earlier is no longer applicable. Instead, the user
may simply indicate an upper bound for the bandwidth
cost or the amount of data to be downloaded. However,
to find out how likely it is that a file may be accessed,
we may continue to use our prediction algorithm by
applying our extended definition of access probability to
pages that are not linked directly to the current page.
Specifically, assume that page C can be reached from
page A through a sequence of pages, say A = B1, B2,…,
Bk = C, where Bi ≠ Bj for i ≠ j (i.e., there is no loop in

the path; Fig. 9). Clearly, the probability that
page C may be accessed from A through this
particular path is given by P{B2|A}P{B3|B2}
… P{B{k – 1|Bk – 2}P{C|Bk – 1}, where P{Bi
+ 1|Bi} (1 ≤ i ≤ k – 1) is the access probabili-
ty defined earlier. The value of P{Bi + 1|Bi} is
computed with Eq. 1, in which the counters
used are the same as those for real-time
prefetching. Then the access probability
P{C|A}, which is defined as the conditional

probability that C will eventually be accessed given that A is
the current page, may be obtained by taking the summation
of the probabilities for all the simple paths from A to C.
Sometimes, the exact value of P{C|A} is impossible to find,
since there is no upper bound on the path length. In this
case, we may estimate P{C|A} by only considering paths
shorter than a given length, or approaching its true value
gradually as new paths are found. In our off-line prefetch
scheme, we take the second approach, because it requires
fewer pages to be expanded.

In order to prefetch a group of pages related to a certain
topic, the user needs to specify some initial pages for the
prefetch program to start with. The initial pages may be
obtained either by searching for the topic or from the book-
marks. For simplicity, we assume there is a virtual page that
has links to, and only to, all the initial pages. Pages waiting to
be prefetched are sorted in decreasing order of their access
probabilities from the virtual page based on all the paths dis-
covered so far, and all the initial pages are assigned access
probability 1. The page at the head of the queue is prefetched
each time. Once a prefetched page is received, the access
probability of each link on this new page is computed. If a
new path to a page already in the queue is found, the access
probability for the page is updated and its position in the
queue changed accordingly. Otherwise, the page is simply
inserted into the queue if it has not already been prefetched.
Prefetching stops as soon as the total bandwidth cost, or the
total amount of data downloaded, exceeds the limit placed by
the user.

What we have described are some basic functions that

■ Figure 9. A simple path between two pages, A and C.

Page A
Page B2 Page B3

Page Bk-1 Page C

■ Figure 10. Icons used in our prefetch program.

IEEE Personal Communications • October 199832

should be included in an off-line
prefetching algorithm. More sophisti-
cated functions can be added to select
files more intelligently. For instance,
we may require that only pages con-
taining certain keywords may be
prefetched. Our goal here is simply to
show how prefetching can be applied in
this kind of situation, and how the
access probabilities may be obtained.

Implementation:
A Prefetch Program

We have developed a program on a PC
Windows system based on the real-time
prefetch scheme described in the last
few sections. The program is integrated
with the Netscape browser through the
Netscape Client application program-
ming interface (API). When executed
on a PC for the first time, it needs to
register with the machine’s Netscape
program as an http protocol handler.
After that, each time Netscape is
opened, the prefetch program is started
automatically. When the prefetch func-
tion is activated, the user may use
Netscape as usual. The Netscape win-
dow looks the same, except that some icons will be added to
the page being viewed to alert the user regarding the status of
the links on that page (see below).

In our program, whenever a new page is displayed, the
status of each link on this page is checked by measuring the
sum of the time needed to connect to the server and the
time between sending out a header request and receiving the
response from the server. The value obtained in this way is
not very accurate and may vary with time. However, in gen-
eral, it does indicate the quality of the link at that time. If
the user has downloaded some pages from the server recent-
ly, say in the last 10 minutes, the average speed at which the
files were downloaded is a better estimation of the actual
link condition [8]. This link quality information is provided
to the user through an icon placed next to the corresponding
link. This can potentially reduce traffic on congested links,
because most people would choose a faster link if several
options are available. Figure 10 shows the icons used in our
program.

Basically, the mouth shape of an icon indicates whether a
link is fast, slow, or in-between, and the hat indicates if a copy
of the file is cached on the local disk. For example, the first
icon in Fig. 10 means that the connection is good. Requests to
this server are expected to be satisfied very fast. The icon
below it shows not only that the link is fast, but also that the
file is available on the local disk. The last icon in the second
row indicates that the file is cached on the local disk, but it
may be slow if you follow that link further to access other
pages on that server. The icon at the bottom indicates an
error (e.g., the server is not reachable or the file was not
found). After a file is prefetched, the icon next to the corre-
sponding link will be switched to a face wearing a hat with the
same mouth shape. Figure 11 is a sample screen which demon-
strates how the icons work.

Our prefetch program keeps track of a user’s access history
and computes access probabilities as described earlier. The
access probabilities are only available to pages that are visited

frequently, since we have not implemented the prediction
algorithm on the server site yet. Because of this and also
because we are currently unable to obtain the capacity infor-
mation of the path to an arbitrary server, we limit the number
of links that may be prefetched on each page to three. In gen-
eral, links with the highest access probabilities, if they are
available, or the slowest ones are prefetched. We are currently
working on a better implementation of the original prefetch
scheme.

In order to save bandwidth, the program does not prefetch
images embedded in a prefetched page except for image
maps. Instead, they are downloaded only when the user actu-
ally requests the page. The ongoing prefetch procedure is
stopped immediately whenever a new request is issued by the
user, unless the requested file is the one being prefetched.
This results in some files not being transmitted completely. If
the system is able to continue an interrupted transmission, it
allows us to make better use of these partial documents.

One interesting thing we found from using this program is
that users tend to go to pages which have been prefetched,
even though they would not have been interested had these
pages not been prefetched. This is because prefetched files
are fast to load, which means it does not take the user much
time if the page is not interesting. Moreover, if prefetching is
carried out based on access probabilities from the server, the
user may read them out of curiosity, since prefetched pages
are presumably popular among other users according to our
prediction algorithm.

Prefetching and
Other Internet Technologies

In addition to prefetching, several other techniques have been
proposed to improve network efficiency and reduce delay.
Among them, the most popular ones are caching and pushing.
In this section, we compare them with prefetching.

■ Figure 11. A prefetch program sample page.

IEEE Personal Communications • October 1998 33

Caching and Prefetching
Caching and prefetching are operations complementary to
each other. This includes not only caching requested files at
the user’s machine in case the user needs them again, but
also caching the files at a proxy server or at Web caches dis-
tributed in the network so that they may be used to satisfy
requests from other users. Files that are available on the
local disk and are up to date need not be prefetched. In addi-
tion, prefetch requests may be satisfied by files cached in the
network instead of being retrieved directly from the server.
Reference [13] gives an excellent overview of current caching
solutions.

However, caching alone is not sufficient for providing fast
file access in many situations. Several recent studies show that
although the hit rate resulting from caching can be as high as
50 percent or more, the reduction in delay is generally signifi-
cantly lower, while prefetching can potentially achieve better
performance especially when applied in combination with
caching [14, 15]. Furthermore, pages transmitted due to
prefetch requests can be cached in the network for future
accesses from other users, which may help improve the cache
hit ratio.

Prefetching and Pushing
Prefetching and pushing bear many similarities in the
sense that both try to obtain files in advance before the
user requests them. One advantage of real pushing is the
same as that of multicasting, which is that if the same
information is requested by several users, the bandwidth
usage may be saved by sending out the information just
once instead of sending one copy to every single user [16].
However, for Web browsing real pushing is hard to imple -
ment due to the diversity of users’ needs in terms of con-
tent, as well as time differences in when users need to
receive the information. Not surprisingly, the push func-
tions included in the latest version of Internet Explorer
(IE) and Netscape are actually “client pulling”[17]. In
other words, the client machine is the active party. It auto-
matically requests files periodically from the server at
times set up by the user. Compared to pushing information
all the way to the user’s machine, push caching is in fact a
more efficient way to save bandwidth [16].

From the point of view of retrieving information before
it is requested, pushing (i.e., client pulling) is more limited
than prefetching for the following reasons. First, pushing
relies on the user predicting what he will need and when.
However, in Web browsing the user’s behavior is often
highly unpredictable. In other words, users frequently
access pages they had no intention of visiting; thus, we
cannot expect them to accurately predict which pages
should be pushed. With real-time online prefetching, pop-
ular pages may always be prefetched based on access prob-
abilities from the client or the server as soon as the user
starts visiting a server. Second, in the case of pushing, even
for pages visited frequently a user has to either waste
bandwidth by having lots of unneeded information pushed
to his machine, or indicate in great detail what he wants;
for example, “only push sports news about football, not
news about hockey,” which can become quite tedious very
quickly. For prefetching, our simulation results discussed
earlier show that access probabilities from the client can
predict the user’s behavior very accurately for pages visited
frequently. The last issue is timing. Pushing a file every
time it is updated is certainly not desirable. The best
approach is probably to let the user schedule when and
how often files should be pushed, as is done with IE and

Netscape. The problem is, by the time the user reads the
file, i t might have become out of date and need to be
downloaded again. Or, if the user checks the file before
the scheduled push time, again, he/she would still have to
wait for the file to be transmitted. However, with prefetch-
ing a file may be retrieved if and only if the user is brows-
ing and its access probability is greater than the server’s
prefetch threshold.

It is likely that caching, prefetching, and pushing will coex-
ist in the future Internet. While caching speeds up repeated
requests to the same file from one or multiple users, pushing
saves time for those pages that are accessed regularly by users,
and prefetching, which can potentially reduce the average
access delay to almost any server based on access probabilities
from either the server or the client, will fill in the gap between
caching and pushing, and will sometimes achieve better per-
formance. If pushing may be scheduled at off-peak hours and
files are not updated very often, it may have less impact on
the network than real-time prefetching.

Conclusion
Prefetching is one effective technique for reducing Internet
access delay. In this article we describe an adaptive network
prefetch scheme and show how it may be applied to a
mobile environment. At the center of our prefetch scheme
are the prediction and threshold modules, which compute
the access probabilities and prefetch thresholds, respective-
ly. The access probabilities indicate the likelihood of the
user accessing certain links. Depending on whether the user
has visited a page often enough, the access probabilities of
the links on the page may be computed based on the user’s
own access history, or the access history of other users at
the server. The prefetch threshold is a function of system
capacity and load, as well as network and time cost. We find
that it is more cost effective to prefetch a file if and only if
its access probability is greater than its server’s prefetch
threshold.

In a mobile environment, a user may connect to different
networks at different times. Since the prefetch threshold is
computed based on parameters including network capacity
and network cost, our prefetch scheme adapts naturally to
the network to which the user is currently connected. Fur-
thermore, for a given ρ and αT, the prefetch threshold is
only affected by the product of αB and b. Another type of
mobility support is to allow a user to be able to access a
limited number of network files when he is disconnected
from the network. To provide this support, we extend the
definition of access probability to pages that are not linked
directly. In this way, a group of files with high access proba-
bilities from the initial pages indicated by the user may be
prefetched before he is disconnected from the network.
When the user is connected to a slow link, prefetching may
be incorporated with techniques such as sending the dis-
tilled images or the difference between two versions, to
reduce the delay and cost. Prefetching may also be used
together with caching and pushing to further improve over-
all system performance.

References
[1] Z. Jiang and L. Kleinrock, “An Adaptive Network Prefetching Scheme,”

IEEE JSAC, Apr. 1998, vol. 16, pp. 358–68.
[2] A. Bestavros, “Speculative Data Dissemination and Service to Reduce

Server Load, Network Traffic and Service Time for Distributed Informa-
tion Systems,” Proc. ICDE ’96, New Orleans, LA, Mar. 1996.

[3] V. N. Padmanabhan, J. C. Mogul, “Using Predictive Prefetching to
Improve World Wide Web Latency,” Comp. Commun. Rev., July 1996,
pp. 22–36.

IEEE Personal Communications • October 199834

[4] T. W. Yan, M. Jacobsen, H. Garcia-Molina, and U. Dayal, “From User
Access Patterns to Dynamic Hypertext Linking,” Comp. Networks and
ISDN Sys., May 1996, vol. 28, pp. 1007–14.

[5] M. Banatre et al., “Providing Quality of Service over the Web: A News-
paper-based Approach,” Comp. Networks and ISDN Sys., vol. 29, Sept.
1997, pp. 1457–65.

[6] H. Sakagami and T. Kamba, “Learning Personal Preferences on Online
Newspaper Articles from User Behaviors,” Comp. Networks and ISDN
Sys., vol. 29, Sept. 1997, pp. 1447–55.

[7] L. Kleinrock, Queuing Systems Vol 2: Computer Applications, New York:
Wiley, 1975.

[8] H. Balakrishnan al., “Analyzing Stability in Wide-Area Network Perfor-
mance,” Proc. of ACM SIGMETRICS Conf. Measurement & Modeling of
Comp. Sys., Seattle, WA, June 1997.

[9] S. Seshan, M. Stemm, and R. H. Katz, “SPAND: Shared passive network
performance discovery,” Proc. USENIX Symp. Internet Technologies and
Sys., Monterey, CA, Dec. 1997, pp. 135–46.

[10] T. W. Bickmore and B. N. Schilit, “Digestor: Device-Independent Access
to the World Wide Web,” Proc. 6th Int’l WWW Conf., Santa Clara, CA,
Apr. 1997, pp. 1075–82.

[11] A. Fox and E. A. Brewer, “Reducing WWW Latency and Bandwidth
Requirements via Real-Time Distillation,” Proc. 5th Int’l. WWW Conf.,
Paris, France, May 1996, pp. 1444–56.

[12] G. Banga, F. Douglis, and M. Rabinovich, “Optimistic Deltas for WWW Laten-
cy Reduction,” Proc. USENIX 1997 Tech. Conf., Anaheim, CA, Jan. 1997.

[13] M. Baentsch et al., “World Wide Web Caching: The Application-Level
View of the Internet,” IEEE Commun. Mag., June 1997, pp. 170–78.

[14] F. Douglis, A. Feldmann, B. Krishnamurthy, and J. C. Mogul, “Rate of
change and other metrics: A live study of the World-Wide Web,” Proc.
USENIX Symp. Internet Technologies and Sys., Monterey, CA, Dec. 8–11,
1997, pp. 147–58.

[15] T. M. Kroeger, D. D. E. Long, and J. C. Mogul, “Exploring the bounds of
Web latency reduction from caching and prefetching,” Proc. USENIX Symp.
Internet Technologies and Sys., Monterey, CA, Dec. 8-11, 1997, pp. 13–22.

[16] J. S. Gwertzman, “Autonomous Replication Across Wide-area Internet-
works,” Thesis, Harvard College, Cambridge, MA, 1995.

[17] T. Spangler, “Push Servers Review,” PC Mag., June 10, 1997, pp. 156–80.

Additional Reading
[1] A. Bestavros, “WWW Traffic Reduction and Load Balancing through

Server-Based Caching,” IEEE Concurrency, Special Issue on Parallel and
Distributed Technology, vol. 5, Jan.–Mar. 1997, pp. 56–67.

[2] J. Griffioen and R. Appleton, “Reducing File System Latency Using a Pre-
dictive Approach,” Proc. Summer 1994 USENIX Conf., Boston, MA, June
1994, pp. 197–207.

[3] G. H. Kuenning and G. J. Popek, “Automated Hoarding for Mobile Com-
puters,” Proc. 16th ACM Symp. Op. Sys. Principles, St. Malo, France,
Oct. 5–8, 1997.

[4] H. Lei and D. Duchamp, “An Analytical Approach to File Prefetching,”
Proc. 1997 USENIX Annual Tech. Conf., Anaheim, CA, Jan. 6–10, 1997.

[5] B. N. Schilit et al., “TeleWeb: Loosely Connected Access to the World Wide
Web,” Proc. 5th Int’l. WWW Conf., Paris, France, May 1996, pp. 1431–43.

Biographies
ZHIMEI JIANG (jiang@cs.ucla.edu) received a B.S. degree in computer science
from Nankai University, China, in 1992. Since 1994 she has been working
toward a Ph.D degree in computer science at the University of California at
Los Angeles. Her current research interests are in performance analysis,
mobile computing, video transmission, and Internet caching and prefetching.

LEONARD KLEINROCK [F] (lk@cs.ucla.edu) has been a professor of computer
science at the University of California, Los Angeles, since 1963. He received
his Ph.D degree from MIT. His research interests focus on performance
evaluation of high-speed networks and parallel and distributed systems. He
has had over 200 papers published and is the author of six books. He is a
member of the National Academy of Engineering, and a Guggenheim Fel-
low.

